PGA-VHD
Video Generator, Tester, and Analyzer

Generates VGA and HDMI Video patterns
Supports HDMI 2.0(a), Deep Color, 4K @ 60Hz 4:4:4, and HDR
Supports HDCP 1.4 and 2.2
Can be Used as a portable HDMI Monitor/TV
Rechargeable Battery Operation
Customized Test Patterns

UMA1253 Rev B
Table of Contents

1.0 Introduction ... 4
 1.1 General ... 4
 1.2 Features .. 4

2.0 Package Contents ... 5

3.0 Configuration and Operation .. 5
 3.1 Panel Description .. 5
 3.2 General Operation .. 6
 3.2.1 Quick Select Bar ... 6
 3.2.2 Output Type/Output Settings ... 7
 3.2.3 Source Test ... 8
 3.2.4 Sink Test ... 9
 3.2.5 Loop Test ... 9
 3.2.6 Settings ... 10

4.0 Using the PGA-VHD as a Video Generator .. 11
 4.1 Signal Format .. 11
 4.2 Video Pattern .. 12
 4.2.1 Steps to update user defined patterns using USB flash memory 12
 4.3 Select Output Audio ... 13
 4.4 TMDS Scrambling Setting .. 13

5.0 Source Test (PGA-VHD acts as Sink) ... 13
 5.1 Format Analysis .. 13
 5.2 Video Analysis ... 14
 5.3 Audio Analysis .. 14
 5.4 Packet Information ... 15
 5.5 HDCP Selection .. 15

6.0 Sink Test (PGA-VHD as Source) ... 15
 6.1 EDID (Read/Save/Learn) .. 15
 6.2 HDCP Encryption applied to the output Video ... 16

7.0 Cable or Repeater LoopTest .. 17

8.0 Settings .. 17
 8.1 Preferences .. 17
 8.2 Network Setting ... 17
 8.3 Firmware ... 18
 8.4 Battery .. 19

9.0 TELNET Ethernet Protocol: TCP/IP Port (6133) ... 19

10.0 Recalling Factory Defaults .. 22

11.0 Firmware Upgrade .. 22

12.0 Troubleshooting .. 23
 12.1 Contacting Hall Research ... 23

13.0 Specifications ... 24
TRADEMARKS USED IN THIS MANUAL

Hall Research and its logo HR are trademarks of Hall Research. Any other trademarks mentioned in this manual are acknowledged as the property of the trademark owners.

FCC RADIO FREQUENCY INTERFERENCE STATEMENT

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer’s instructions, may cause interference to radio communication. It has been designed to comply with the limits for a Class A computing device in accordance with the specifications in Subpart B of Part 15 of FCC rules, which are intended to provide reasonable protection against such interference when the equipment is operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user at their own expense will be required to take whatever measures may be necessary to correct the interference. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.
1.0 Introduction

1.1 General

The Hall Research PGA-VHD is a handheld versatile multi-interface tester for video and audio. As a video generator, it provides both VGA and HDMI outputs, and as an analyzer, it features an HDMI 2.0 input. The product boasts a bandwidth of 18 Gbps (supporting 4K/60 4:4:4) and supports HDCP 2.2. An indispensible tool for verification and troubleshooting of AV installations or for performing compatibility tests in the lab, the PGA-VHD offers many advanced features at a cost effective price.

The battery operated PGA-VHD has a large color 4K display with touch screen function for user operation and viewing status of outgoing and incoming video. The screen can also act as a 4K HDMI monitor supporting virtually all HDTV and PC resolutions. The instrument can also be used as an analyzer for video signal sources and displays. The PGA-VHD can perform “loop test” where quantitative information concerning performance of cables, extenders, repeaters, and video splitters can be obtained.

The instrument is packaged and shipped in a rugged carrying case to protect your instruments from hostile environments, shock, vibration, moisture and impact. Users will appreciate the built-in long lasting battery operation, multitudes of video patterns including user’s own custom pattern uploadable via USB, touch panel control, and access to advanced features such as HDCP analyzer and loop test in a single instrument. The PGA-VHD supports 8-channel LPCM audio with selectable sample rate. The analyzer can also be used in pass-through mode bypassing HDMI input to the connected display at the output.

NOTE

First time use:

Prior to switching on the PGA-VHD for the first time, you must plug the power supply to it. This will disable the “shipping mode” and charge the device. We recommend leaving the product connected to the power supply for 2 to 3 hours prior to using it with battery alone for the first time.

1.2 Features

- Provides both VGA and HDMI outputs and an HDMI input
- HDMI input can be used as a display, source analyzer, or pass-thru loop mode
- Supports HDMI 2.0(a) on output and input with 18 Gbps Bandwidth
- Supports 4K2K/60 4:4:4 8bit and 4K2K60 4:2:0 16bit video signals
- High Dynamic Range Video with HDR support
- Supports HDCP 2.2 (and 1.4)
- Large selection of output video patterns including user defined and patterns with moving objects
- Large 4.3” touch screen for display and control
- Screen image can be mirrored (duplicated) to the HDMI output (perfect for training)
- USB port for mouse control, loading custom patterns, or firmware update
- Analog (stereo) audio output
- Ethernet control using Telnet commands
- Scrambler supported for videos over 340MHz output
- EDID read and save option
- Rugged and durable housing with convenient carrying case
- Battery operation time of up to 4 hours under full load
2.0 Package Contents

(1) Carrying Case
(1) Model PGA-VHD
(1) 12V DC Power Supply
(1) IEC Power Cord
(1) 6’ HDMI Cable
(1) 6’ VGA Cable
(1) User’s Manual

3.0 Configuration and Operation

3.1 Panel Description

DC 12V: Connect the 12V 5A DC power supply supplied with the unit.

LAN: Connect the CAT5e/6 cable to this port to control the device using Ethernet TCP/IP protocol.

USB: Connect to a mouse for control or a flash drive for firmware update or loading custom patterns.

AUDIO OUT: Connect to speakers for analog audio output.

VGA OUT: Connect to a VGA display for simultaneous video output.

HDMI IN: Connect to this port to make the PGA-VHD act as a sink.

HDMI OUT: Connect to this port to make the PGA-VHD act as a source.

Touch Panel: Touch screen for user control.

Block Diagram

Sturdy carrying case
3.2 General Operation

There are **SIX** major options on the Home Screen on the PGA-VHD.

- Quick Select – Top Menu Bar
- Output Type
- Source Test
- Sink Test
- Loop Test
- Settings (gear icon on the bottom right)

3.2.1 Quick Select Bar

There is a quick select menu bar at the top of the HOME screen so users can easily navigate from one setting to another. PGA-VHD offers the users the convenience to change the output resolution, pattern and output HDCP encryption all from one screen.

![Home Screen – Showing the Top Menu Bar](image)

NOTE
Navigating through Submenus:
The Quick Select items are clickable only when the main menu is shown. Once you have clicked into any submenu, the Quick Select top line items are not clickable. To navigate back to the main menu, use the blue back arrow button on the screen.

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shows the current output resolution setting. Click on it to quickly jump to: Output Settings/Signal Format/Resolution to select a different resolution.</td>
</tr>
</tbody>
</table>
Video Generator/Analyzer

<table>
<thead>
<tr>
<th>2</th>
<th>Shows the last pattern selected from the Default Patterns group (pattern names from Album including user uploaded patterns are not shown on the Quick Select bar). Clicking on this button will take you to: Output Settings/Video Pattern (Default patterns) screen where you can select a different pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Use this button to enable the HDMI / VGA only resolutions on the quick select line. Notice that both VGA and HDMI outputs are always active (VGA output is always RGBHV format regardless of HDMI color space settings). The Purpose of this quick select button is to help get you quicker to proper list of resolutions available from the quick select bar.</td>
</tr>
<tr>
<td>4</td>
<td>This button will take you to Sink Test/HDCP Selection page where you can select No HDCP, 1.4 or 2.2 HDCP.</td>
</tr>
</tbody>
</table>

3.2.2 **Output Type/Output Settings**

This button is used to set the signal type for the HDMI output and to define other parameters pertaining to the outputs such as, color space, color depth, video resolution, video pattern, and audio formats.

![Output Type Menu](image)

Output Type

<table>
<thead>
<tr>
<th>Menu</th>
<th>Sub-Menu</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Format</td>
<td>TYPE</td>
<td>HDMI</td>
<td>Select the digital video output type - Choose the color space (RGB, YCbCr 4:4:4, 4:2:2, or 4:2:0), color depth (8 bit thru 16 bit) and HDR mode. Depending on the resolution setting, not all color depths and color modes may be listed or available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVI</td>
<td>The only color option for DVI output setting is RGB 8 bit.</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td>TV</td>
<td>TV</td>
<td>Select among SDTV/HDTV resolutions. Here you will be making two selections: Resolutions and Frequency (refresh rate). Depending on the resolution selected you get different choices for the Frequency. For example when you select 576p for output resolution you only get 50Hz, but for 720p output resolution you get 6 choices from 25 Hz to 60 Hz</td>
</tr>
<tr>
<td></td>
<td>PC</td>
<td>PC</td>
<td>Select the PC resolutions. Selection method is slightly different than that for TV explained above. Here, you don’t select Resolution independent of Refresh rate, instead all available refresh rates are shown as part of the resolution. For example you have a choice for 1440x900 @ 60Hz, and</td>
</tr>
</tbody>
</table>
PGA-VHD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1440x900 @ 75Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Pattern</td>
<td>DEFAULT Pattern</td>
<td>Select the output pattern, enabling/disabling timer duration and number of moving squares and their speed</td>
</tr>
<tr>
<td></td>
<td>Timer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moving Squares</td>
<td></td>
</tr>
<tr>
<td>ALBUM</td>
<td></td>
<td>Select the user defined pattern *</td>
</tr>
<tr>
<td>PCM Audio Tone</td>
<td>MUTE ON/OFF</td>
<td>Enable/ Disable MUTE on output audio</td>
</tr>
<tr>
<td></td>
<td>SINE WAVE</td>
<td>Select the bits per sample (1624 bits), sampling rate (32192 KHz) and audio decibel levels</td>
</tr>
<tr>
<td></td>
<td>Channel</td>
<td>Select the number of audio channels needed (from 2 to 7.1 channels).</td>
</tr>
<tr>
<td>Setting</td>
<td>Scrambling AUTO</td>
<td>Auto enable Scrambling for video over 340 MHz bandwidth (Per HDMI 2.0 specifications, scrambling of the digital data is done prior to the TMDS encoding). Auto is default mode and is recommended.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Turn off the scrambling for output video</td>
</tr>
</tbody>
</table>

* Selecting ALBUM under Video Pattern tab will activate the HDMI output mirroring function. Whatever is being shown on the touch-screen is also sent to the HDMI output. This mirroring mode stays in effect even after you leave this screen so the HDMI output will remain a duplicate of the screen on the device. This is a useful tool for training in a classroom setting on how to use the instrument. To disable the output-mirroring mode just select a pattern from the Default group.

3.2.3 Source Test

In this mode you are using the PGA-VHD to test a video source such as STB, laptop, Blu-ray player, etc. You can also use this mode to turn the PGA-VHD into a 4K compatible TV. Source tests include format, video, audio, packet and HDCP analysis of the incoming video signal from the source.

![Source Test - PGA-VHD as a Sink](image)

<table>
<thead>
<tr>
<th>Source Test</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu</td>
<td>Sub-Menu</td>
<td>Description</td>
</tr>
<tr>
<td>Format</td>
<td>READ/ SAVE</td>
<td>Read and save the information from the VIDEO source such as timing parameters, HSYNC, VSYNC, pixel clock, etc.</td>
</tr>
</tbody>
</table>
Video Generator/Analyzer

<table>
<thead>
<tr>
<th>Video</th>
<th>Full Screen</th>
<th>Provides a small screen displaying the video from the source in Full Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Screen Info</td>
<td>Displays the video information along with the source</td>
</tr>
<tr>
<td></td>
<td>Pass through</td>
<td>Enables video pass through to the display.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audio</th>
<th>READ / SAVE</th>
<th>Read and save the information from the AUDIO source such as modulation scheme, channel information, sampling rate, etc.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Packet</th>
<th>REFRESH</th>
<th>Read the hexadecimal AVI info frame</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HDCP</th>
<th>HDCP 1.4/ HDCP 2.2 Type-0</th>
<th>Enable HDCP (1.4/ 2.2) on PGA-VHD display on HDMI IN port from the source</th>
</tr>
</thead>
</table>

3.2.4 Sink Test

This option is for getting more information from the connected sink device (such as TV, Projector, or Extender) – EDID and HDCP information regarding the connected sink are available here.

![Sink Test – PGA-VHD acts as a Source](image)

Sink Test

<table>
<thead>
<tr>
<th>Menu</th>
<th>Sub-Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDID</td>
<td>READ / SAVE</td>
<td>Read and save the EDID of a HDTV or other devices using EDID analyzer</td>
</tr>
<tr>
<td></td>
<td>Learn from RX</td>
<td>Learn EDID from the DUT that’s connected to the HDMI OUT to save it in the HDMI IN port</td>
</tr>
<tr>
<td></td>
<td>Use Default</td>
<td>Use internal PGA-VHD EDID</td>
</tr>
<tr>
<td>HDCP</td>
<td>HDCP 1.4</td>
<td>Select HDCP 1.4 or 2.2 for video output on HDMI OUT port</td>
</tr>
<tr>
<td></td>
<td>HDCP 2.2</td>
<td>Select HDCP 1.4 or 2.2 for video output on HDMI OUT port</td>
</tr>
</tbody>
</table>

3.2.5 Loop Test

This section describes the cable or repeater loop test feature to evaluate the quality of the HDMI cables. It is important to note that in this mode the system generates video with random pixel values at its output and it expects to see the exact same pixel data values at the input. It tallies the number of errors. Therefore if the video
transport is using any encoding or compression techniques, the loop test will result in huge errors since pixels are modified (and delayed) by the encoder. You can use loop test for cables or extenders that do not modify pixel values in anyway, such as most HDBaseT products or Hall Research’s 4K Javelin optical HDMI cables.

Loop Test

<table>
<thead>
<tr>
<th>Menu</th>
<th>Sub-Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1920x1080@60 4Kx2K@30 4Kx2K@60</td>
<td>Time Duration / Time Elapsed</td>
<td>Evaluate the signal quality of HDMI cables and Device Under Test (DUT) in 3 different resolutions FHD(1080p), UHD @ 30 and UHD @ 60</td>
</tr>
</tbody>
</table>

It is recommended to run the test for at least 15 seconds for the results to be meaningful. You can use Loop Test to compare the quality of different cables or their ability to handle UHD 30Hz or 60 Hz.

3.2.6 Settings

This section shows the system settings to change the screen brightness, network settings, firmware update and battery status.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Sub-Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td>Screen Brightness</td>
<td>Adjust the screen brightness at required levels</td>
</tr>
<tr>
<td></td>
<td>Beep</td>
<td>Enable/ Disable system sound</td>
</tr>
</tbody>
</table>
4.0 Using the PGA-VHD as a Video Generator

The PGA-VHD simultaneously provides HDMI and VGA outputs, they are both active and show the same image. HDMI is the primary output (VGA output shows the same image and EDID functions apply to HDMI output only).

Connect the desired video output to the “Sink” using the provided cables. Sink can be an HDTV, Projector, Repeater, Splitter or a Video Switch.

NOTE Both HDMI and VGA outputs are simultaneously active. You can select HDTV or VGA resolutions from HDMI/VGA Quick Select option from top menu bar.

 PGA-VHD as Video Pattern Generator

Select **Output Type** from Main Menu. See **section 3.2.2** for more details.

4.1 Signal Format

The following selections can be accessed under “Signal Format” option.

- **Type** – Switch between HDMI and DVI output format, select Color Space, Depth and HDR modes
- **Resolution** – Choose among HD and PC output resolutions
Select HDMI or DVI output format

Then select color parameters

Select resolution and refresh Rates

Both HDTV and PC (VGA or DVI) resolutions can be selected. Some TV resolutions (such as 480i, 1080i) may not be available (grayed-out). This occurs when the Quick Select is set for VGA. If you want all resolutions available, go back to main menu and change Quick Select from VGA to HDMI.

4.2 Video Pattern

PGA-VHD is able to output default and user definable custom video patterns (Album). Select “DEFAULT” to select among default patterns.

NOTE

Default choice also allows display of a timer on the output screen as well as enabling moving squares.

In Album mode timer or moving squares are not displayed. This mode enables the output mirroring feature where the HDMI output is an exact duplicate of the instrument’s video screen. This is useful for demonstrations and training purposes. To disable mirroring, select any pattern from default choices.

To go to the next image touch right edge of the screen, for previous image touch the left edge, and for going back to gallery touch the center of the screen.

Enabling Timer shows a running timer on the output screen. Hit RESET to reset displayed time to 0:0:0 (or any other start time you want to set)

Enable Moving Squares and select up to 5 moving squares. Each square has a different pre-assigned color.

4.2.1 Steps to update user defined patterns using USB flash memory

- Create a folder by the name: usr_pic on the root directory of the USB flash drive with your desired images in JPG format. Images should ideally be 3840x2160 pixels. But the device accepts smaller images.
- From Main Menu, select the Settings Icon (gear symbol) ➔ Firmware ➔ Pattern
- Check the free space in the PGA-VHD disk storage displayed on this screen. The maximum total size for custom patterns is 2 GB.
- Touch the “Update” option to update the patterns and wait for completion. Then reboot the device.
4.3 Select Output Audio

The audio settings can be changed in the “PCM Audio Tone” tab. The bit depth, sampling rate, decibel level and number of audio channels can be selected.

4.4 TMDS Scrambling Setting

Auto enable Scrambling for video over 340 MHz bandwidth. Per HDMI 2.0 specifications, scrambling of the digital data is done prior to the TMDS encoding. Auto is default mode and is recommended.

5.0 Source Test (*PGA-VHD acts as Sink*)

The PGA-VHD can be used to display the video from any HDMI or DVI source. It can also detect and display the video format, audio format, packet data, and HDCP status of the signal received from the source.

Note that the source signal can be from an original video source (laptop, DVD player, etc), or it could be the signal that is passed through a repeater, scaler, switcher, etc.

Also, for testing a switcher, scaler, or other device, you can use the PGA-VHD’s own output as the source.

5.1 Format Analysis

In Format Tab, read and save the information from the VIDEO source such as timing parameters, HSYNC, VSYNC, pixel clock, etc.
The information shown can be saved in (.dat) and (.txt) format. Plug a USB flash to the analyzer and click on Save. Files are instantly created and saved on the USB flash device.

5.2 Video Analysis

In Video tab, a small screen displaying the video from the source is provided to monitor the incoming video from the source. In Full Screen, the video information along with the source information is displayed.

The Pass through option enables video pass through for the video coming into the PGA-VHD’s HDMI IN to the display via HDMI OUT.

5.3 Audio Analysis

In Audio tab, read and save the information from the AUDIO source such as modulation scheme, channel information, sampling rate, etc. The information can be read and saved in (.dat) and (.txt) format in the USB flash drive.
5.4 Packet Information
In this tab, the AVI info frame packet information of video source can be read and saved in (.dat) and (.txt) format in the USB flash drive.

5.5 HDCP Selection
Show the HDCP standard (none, 1.4 or 2.2) for the incoming video on HDMI IN port of the PGA-VHD.

6.0 Sink Test (PGA-VHD as Source)
This option is used for testing the EDID and HDCP of the connected SINK. HDCP encryption can be enabled on the HDMI OUT to test HDCP authentication with the sink device.

Use the following procedures to make the physical connections from the PGA-VHD from the source device under test.

6.1 EDID (Read/Save/Learn)
The PGA-VHD can read the EDID data from the downstream devices such as displays and presents it on user interface in human readable format. To Read the EDID, a Sink (Display) needs to connected to the HDMI Output.
The read EDID can be saved directly to the Flash Drive (USB Mass Storage Device) when SAVE button is pressed. The PGA-VHD not only saves the raw EDID with file name ‘tx_edid_{index}.dat’ but also saves the human readable ‘tx_edid_{index}.txt’ file for your reference.

The learn EDID function is used to emulate a Sink and debug EDID related issues. The learned EDID is used as HDMI input EDID so that any HDMI source connected to the HDMI Input reads the learned EDID.

The PGA can learn the EDID in two ways. Firstly, it can learn from attached Sink directly. Secondly, it can learn the EDID from a Flash Drive.

The “Learn from RX” option can be used to learn the EDID from the connected sink.

Similarly, "Learn from USB" option is used learn the EDID from Flash Disk. Note that in order to read the EDID file from Flash Drive, the EDID file must be named as "rx_edid.dat".

Select “Use Default” to revert and use the internal factory default PGA-VHD EDID.

6.2 HDCP Encryption applied to the output Video

In HDCP tab under SINK option, Test the HDCP of the downstream devices such as SINK or an AV receiver by enabling the HDCP 1.4 or HDCP 2.2 Type 0 or Type 1 encryption. This will enable the HDMI OUT of the PGA-VHD to output patterns with HDCP encryption in the above two SINK configurations.
7.0 Cable or Repeater Loop Test

This option is used to evaluate the signal quality of HDMI cables or device under test (DUT) using one of 3 resolutions FHD(1080p), UHD @ 30, or UHD @ 60.

It is recommended to run the test for at least 15 seconds for the results to be meaningful. You can use Loop Test to compare the quality of different cables or their ability to handle UHD 30Hz or 60 Hz.

See Section 3.2.5 for more details.

![Loop Test - Connection Examples](image)

Procedure for Loop Test:

- Select Loop Test from the HOME screen.
- Set the “Time Duration” for the test.
- Touch the “START” button to evaluate the signal transmission quality. Do not touch any buttons for at least 3 seconds after starting test.
- Let the PGA-VHD complete the test, or terminate Test by pressing “STOP”.

8.0 Settings

The Settings selection (gear icon) consists of system adjustments, firmware and network setup.

8.1 Preferences

Screen Brightness: Adjust the screen brightness in required levels in percentage.

Beep: Enable/ Disable system sound.

Factory Reset: Select this option to restore the device to factory default setting.

8.2 Network Setting

The PGA-VHD has Ethernet (TCP/IP) control accessibility via Network settings under the “Settings” icon on the HOME screen.

Connect the Ethernet port of the PGA-VHD with the PC or an external control system. The user has the option to select either the DHCP or Static IP addressing.
Network Settings

As shipped from the factory (or after restoring factory defaults), the PGA-VHD IP address is set for DHCP and the IP address will be assigned by the router.

NOTE
Before changing the network setting from DHCP to Static IP, select Static IP, touch “update” and then, reboot the device to enter the complete IP configuration.

Setting the IP address

A) DHCP - Default

In order to use the DHCP feature, you must have a compatible DHCP ROUTER OR SWITCH that will assign the IP addresses to the end devices.

- Use DHCP radio button to automatically assign IP address to the pattern generator in the network. A DHCP router has to be connected to the network.
- Click “Update” and Reboot the device.
- Click “Refresh”.

B) Setting STATIC IP

If your network doesn’t support DHCP server function: Then you have to change the IP addresses manually in the fields below.

- **Static IP**: Select Static IP radio button and enter the IP address manually. Click “Update” to confirm the settings. Reboot the device. Click “Refresh”.
- **Subnet Mask**: Enter the subnet mask as assigned by your network administrator. Click “Update” to confirm the settings. Reboot the device. Click “Refresh”.
- **Gateway**: Enter gateway IP address for the device and the PC. Click “Update” to confirm the settings. Reboot the device. Click “Refresh”.

8.3 Firmware

The Firmware section can be found in “Settings” icon on the HOME screen. The firmware upgrade on PGA-VHD can be completed through the USB port by updating the System and ARM files.

We do not recommend the user to change any settings in this tab. If you have any questions regarding firmware update, contact Hall Research for more information
Before updating the firmware on the PGA-VHD, make sure the files are in the root directory of the USB drive.
When both the ARM and System files are to be updated, update the ARM first and then the System file.

- Make sure the arm.dat, system.dat, or FPGA.dat file is in the root directory.
- Connect the USB flash drive to the PGA-VHD.
- Select Settings → Firmware → "Arm", "System", or "FPGA" radio button
- Touch Update to initiate update. Wait for 10~15 seconds. Do not remove the USB while updating.
- There will be a message prompting the user to reboot the device upon completion of the update.

8.4 Battery

This section shows the battery status and time remaining for the PGA-VHD before it needs charging.

Depending on screen brightness, a fresh full battery lasts about 4 hours and it can be fully charged in 2 hours.

9.0 TELNET Ethernet Protocol: TCP/IP Port (6133)

PGA-VHD offers communication and control via Telnet. The user can obtain information from the unit such as output resolution, pattern, audio and video data from a remote location.

- Commands are in ASCII format.
- Each command has to be terminated by <CR> and responded with <CR>.
- Commands are case sensitive. Use uppercase characters.
- Unknown command respond with "Invalid Command".

Set Output Resolution

Command: S OUTPUT 0~55
Response: S OUTPUT 0~55

<table>
<thead>
<tr>
<th>Res</th>
<th>0x</th>
<th>1x</th>
<th>2x</th>
<th>3x</th>
<th>4x</th>
<th>5x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>720x480i60</td>
<td>1920x1080i60</td>
<td>1920x1080p23</td>
<td>1366x768p60</td>
<td>3840x2160p59</td>
<td>4096x2160p50</td>
</tr>
<tr>
<td>1</td>
<td>720x576i50</td>
<td>1920x1080i59</td>
<td>640x480p60</td>
<td>1400x1050p60</td>
<td>3840x2160p50</td>
<td>4096x2160p30</td>
</tr>
<tr>
<td>2</td>
<td>720x480p60</td>
<td>1920x1080i50</td>
<td>640x480p75</td>
<td>1600x1200p60</td>
<td>3840x2160p30</td>
<td>4096x2160p29</td>
</tr>
<tr>
<td>3</td>
<td>720x576p50</td>
<td>None</td>
<td>800x600p60</td>
<td>1440x900p60</td>
<td>3840x2160p29</td>
<td>4096x2160p25</td>
</tr>
<tr>
<td>4</td>
<td>1280x720p60</td>
<td>1920x1080p59</td>
<td>800x600p75</td>
<td>1440x900p75</td>
<td>3840x2160p25</td>
<td>4096x2160p24</td>
</tr>
<tr>
<td>5</td>
<td>1280x720p59</td>
<td>1920x1080p50</td>
<td>1024x768p60</td>
<td>1680x1050p60</td>
<td>3840x2160p24</td>
<td>4096x2160p23</td>
</tr>
<tr>
<td>6</td>
<td>1280x720p50</td>
<td>1920x1080p30</td>
<td>1024x768p75</td>
<td>1680x1050pRB</td>
<td>3840x2160p23</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1280x720p30</td>
<td>1920x1080p29</td>
<td>1280x1024p60</td>
<td>1920x1080pRB</td>
<td>1920x1080p60</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1280x720p29</td>
<td>1920x1080p25</td>
<td>1280x1024p75</td>
<td>1920x1200pRB</td>
<td>4096x2160p60</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1280x720p25</td>
<td>1920x1080p24</td>
<td>1360x768p60</td>
<td>3840x2160p60</td>
<td>4096x2160p59</td>
<td></td>
</tr>
</tbody>
</table>

Example: Res = 21 for 640x480p60

Get Output Resolution

Command: R OUTPUT 0~55
Response: OUTPUT 0~55
Set Output Mode

Command: S MODE 0~4
Response: S MODE 0~4

NOTE: YCbCr 4:2:0 is available only for 4K2K59.94/60

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>DVI</td>
<td>RGB</td>
<td>YCbCr 4:4:4</td>
<td>YCbCr 4:2:2</td>
<td>YCbCr 4:2:0</td>
</tr>
</tbody>
</table>

Default Pattern

Command: S PATTERN 0~47
Response: S PATTERN 0~47

<table>
<thead>
<tr>
<th>Default Pattern</th>
<th>Value</th>
<th>Default Pattern</th>
<th>Value</th>
<th>Default Pattern</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPTE Bar</td>
<td>0</td>
<td>TV Bar 100%</td>
<td>1</td>
<td>TV Bar 75%</td>
<td>2</td>
</tr>
<tr>
<td>Checkfield</td>
<td>3</td>
<td>EQ</td>
<td>4</td>
<td>PLL</td>
<td>5</td>
</tr>
<tr>
<td>Ramp Red H 1</td>
<td>6</td>
<td>Ramp Green H 1</td>
<td>7</td>
<td>Ramp Blue H 1</td>
<td>8</td>
</tr>
<tr>
<td>Ramp Red H 2</td>
<td>9</td>
<td>Ramp Green H 2</td>
<td>10</td>
<td>Ramp Blue H 2</td>
<td>11</td>
</tr>
<tr>
<td>Ramp Black to Red V</td>
<td>12</td>
<td>Ramp Green V 1</td>
<td>13</td>
<td>Ramp Blue V 1</td>
<td>14</td>
</tr>
<tr>
<td>Ramp Red V 2</td>
<td>15</td>
<td>Ramp Green V 2</td>
<td>16</td>
<td>Ramp Blue V 2</td>
<td>17</td>
</tr>
<tr>
<td>Stair Red 1</td>
<td>18</td>
<td>Stair Red 2</td>
<td>19</td>
<td>Stair Green 1</td>
<td>20</td>
</tr>
<tr>
<td>Stair Green 2</td>
<td>21</td>
<td>Stair Blue 1</td>
<td>22</td>
<td>Stair Blue 2</td>
<td>23</td>
</tr>
<tr>
<td>Stair White 1</td>
<td>24</td>
<td>Stair White 2</td>
<td>25</td>
<td>Red 100</td>
<td>26</td>
</tr>
<tr>
<td>Green 100</td>
<td>27</td>
<td>Blue 100</td>
<td>28</td>
<td>White 100</td>
<td>29</td>
</tr>
<tr>
<td>Gray 70</td>
<td>30</td>
<td>Gray 40</td>
<td>31</td>
<td>Black</td>
<td>32</td>
</tr>
<tr>
<td>Noise</td>
<td>33</td>
<td>Circle 1</td>
<td>34</td>
<td>Circle 2</td>
<td>35</td>
</tr>
<tr>
<td>Moire</td>
<td>36</td>
<td>V Stripe Red</td>
<td>37</td>
<td>V Stripe Green</td>
<td>38</td>
</tr>
<tr>
<td>V Stripe Blue</td>
<td>39</td>
<td>H Stripe Red</td>
<td>40</td>
<td>H Stripe Green</td>
<td>41</td>
</tr>
<tr>
<td>H Stripe Blue</td>
<td>42</td>
<td>Chess 1</td>
<td>43</td>
<td>Chess 2</td>
<td>44</td>
</tr>
<tr>
<td>Multi Burst</td>
<td>45</td>
<td>CZP</td>
<td>46</td>
<td>Overscan</td>
<td>47</td>
</tr>
</tbody>
</table>

User Defined Pattern

Command: S USERPATTERN 0~29
Response: S USERPATTERN 0~29

<table>
<thead>
<tr>
<th>User Pattern</th>
<th>Value</th>
<th>User Pattern</th>
<th>Value</th>
<th>User Pattern</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philips</td>
<td>0</td>
<td>Checker3x3</td>
<td>1</td>
<td>Checker6x6-1</td>
<td>2</td>
</tr>
<tr>
<td>Checker6x6-2</td>
<td>3</td>
<td>White75</td>
<td>4</td>
<td>White50</td>
<td>5</td>
</tr>
<tr>
<td>White25</td>
<td>6</td>
<td>Ramp W-1</td>
<td>7</td>
<td>Ramp W-2</td>
<td>8</td>
</tr>
<tr>
<td>Ramp W-3</td>
<td>9</td>
<td>Ramp W-4</td>
<td>10</td>
<td>Graybar32 R-1</td>
<td>11</td>
</tr>
<tr>
<td>Graybar32 G-1</td>
<td>12</td>
<td>Graybar32 B-1</td>
<td>13</td>
<td>Graybar32 W-1</td>
<td>14</td>
</tr>
<tr>
<td>Graybar32 R-2</td>
<td>15</td>
<td>Graybar32 G-1</td>
<td>16</td>
<td>Graybar32 B-2</td>
<td>17</td>
</tr>
<tr>
<td>Graybar32 W-2</td>
<td>18</td>
<td>Graybar32 R-1</td>
<td>19</td>
<td>Graybar64 G-1</td>
<td>20</td>
</tr>
<tr>
<td>Graybar64 B-1</td>
<td>21</td>
<td>Graybar64 W-1</td>
<td>22</td>
<td>Graybar64 R-2</td>
<td>23</td>
</tr>
<tr>
<td>Graybar64 G-2</td>
<td>24</td>
<td>Graybar64 B-2</td>
<td>25</td>
<td>Graybar64 W-2</td>
<td>26</td>
</tr>
<tr>
<td>User can add...</td>
<td>27</td>
<td>User can add...</td>
<td>28</td>
<td>User can add...</td>
<td>29</td>
</tr>
</tbody>
</table>

Set Audio Mute

Command: S MUTE 0~1
Response: S MUTE 0~1
<table>
<thead>
<tr>
<th>Mute</th>
<th>Off</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Get Audio Mute Status
- **Command:** R MUTE
- **Response:** MUTE 0~1

Set Audio Bit Depth
- **Command:** S AUDIOBIT 0~2
- **Response:** S AUDIOBIT 0~2

<table>
<thead>
<tr>
<th>Audio Bit Depth</th>
<th>24bits</th>
<th>20bits</th>
<th>16bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Get Audio Bit Depth
- **Command:** R AUDIOBIT
- **Response:** AUDIOBIT 0~2

Set Audio Output Volume Level
- **Command:** S AUDIOLEVEL 0~7
- **Response:** S AUDIOLEVEL 0~7

Get Audio Output Volume Level
- **Command:** R AUDIOLEVEL
- **Response:** AUDIOLEVEL 0~7

Set Audio Sampling Rate
- **Command:** S AUDIOSAMPLE 0~4
- **Response:** S AUDIOSAMPLE 0~4

<table>
<thead>
<tr>
<th>Rate</th>
<th>48KHz</th>
<th>96KHz</th>
<th>192KHz</th>
<th>32KHz</th>
<th>44.1KHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Get Audio Sampling Rate
- **Command:** R AUDIOSAMPLE
- **Response:** AUDIOSAMPLE 0~4

Set Audio Channel
- **Command:** S AUDIOCHANNEL 0~4
- **Response:** S AUDIOCHANNEL 0~4

<table>
<thead>
<tr>
<th>Audio Channels</th>
<th>2</th>
<th>2.1</th>
<th>5.1</th>
<th>6.1</th>
<th>7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Get Audio Channel Number
- **Command:** R AUDIOCHANNEL
- **Response:** AUDIOCHANNEL 0~4

Set Output HDCP ON/OFF
- **Command:** S HDCPTX 0~3
- **Response:** S HDCPTX 0~3
Get Output HDCP ON/OFF

Command: R HDCPTX
Response: HDCPTX 0~3

Set Input HDCP Version Support

Command: S HDCPRX 0~3
Response: S HDCPRX 0~3

<table>
<thead>
<tr>
<th>HDCP Value</th>
<th>Not Supported</th>
<th>1.4</th>
<th>2.2</th>
<th>Both 1.4 & 2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Get Input HDCP Version Support Level

Command: R HDCPRX
Response: HDCPRX 0~1

Get Format Analysis

Command: R FORMAT
Response:
- Hsync High Active
- Vsync High Active
- Progressive
- H total:2200
- H active:1920
- Hsync width:44
- Hsync width + back porch:192
- V total:1125
- V active:1080
- Vsync width:5
- Vsync width + back porch:41
- Video ID Code:10
- 24bit
- Pixel Clock:148505

10.0 Recalling Factory Defaults

Factory defaults resets are parameters (including network settings) back to default. Select the FACTORY RESET option on “Preferences” tab under Settings icon on the HOME screen.

NOTE Factory resetting the PGA-VHD will restore back the default Hall Research settings to the device. The user must confirm the action and take all necessary precautions to prevent loss of data.

11.0 Firmware Upgrade

The firmware upgrade on PGA-VHD can be completed through the USB port as described in Section 8.3. Contact Hall Research for more information.
12.0 Troubleshooting

There are no field serviceable parts or circuits in the device. If you think the device is malfunctioning, please try to use the following methods to obtain a picture first.

- Try Rebooting the device.
- If there is no picture on the display from HDMI OUT, you can select the FACTORY RESET option on the unit’s SETTINGS icon.

12.1 Contacting Hall Research

If you determine that your PGA-VHD is malfunctioning, do not attempt to repair the unit instead, contact Hall Research Technical Support at 714-641-6607. To return the unit to Hall Research you must first get a Return Authorization (RMA) number. Package the unit carefully, if returning. We recommend that you use the original container.
13.0 Specifications

<table>
<thead>
<tr>
<th>Video Bandwidth</th>
<th>Single link 600 MHz (18 Gbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDMI and HDCP</td>
<td>HDMI 2.0 (a) HDCP 1.4 and 2.2</td>
</tr>
<tr>
<td>Input Ports</td>
<td>1xHDMI, 1xUSB, 1xRJ45</td>
</tr>
<tr>
<td>Output Ports</td>
<td>1xHDMI, 1xVGA, 1x3.5 mm</td>
</tr>
<tr>
<td>Video Support</td>
<td>Up to 4K2K60 4:4:4 8 bit, 4K2K60 16 bit (HDR)</td>
</tr>
<tr>
<td>Audio</td>
<td>8 Channel LPCM up to 192K</td>
</tr>
<tr>
<td>USB</td>
<td>USB 2.0</td>
</tr>
<tr>
<td>Control</td>
<td>USB mouse/ Touch Panel/ Ethernet</td>
</tr>
<tr>
<td>ESD Protection</td>
<td>±15kV (gap discharge) and ±8kV (contact discharge)</td>
</tr>
<tr>
<td>Operating Temp</td>
<td>0 ~ 40 °C (32 ~ 104 °F) 20%~90%, non-condensing</td>
</tr>
<tr>
<td>Storage Temp</td>
<td>-2060 °C (-4140 °F)</td>
</tr>
<tr>
<td>Power Supply</td>
<td>12V 5A DC/ Battery</td>
</tr>
<tr>
<td>Power consumption</td>
<td>15 W max</td>
</tr>
<tr>
<td>Housing</td>
<td>Metal Enclosure</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Model 6.8”(175mm) W x 4.49”(114mm) D x 1.97”(50 mm) H</td>
</tr>
<tr>
<td></td>
<td>Carrying Case 15.35”(390mm) W x 12.4”(315mm) D x 4.33”(110mm) H</td>
</tr>
<tr>
<td></td>
<td>Shipping 24”(609.6mm) W x 16”(406.4mm) D x 6”(152.4mm) H</td>
</tr>
<tr>
<td>Weight</td>
<td>Net 725.75g (1.6 lbs.)</td>
</tr>
<tr>
<td></td>
<td>Package 2721.5g (6 lbs.)</td>
</tr>
<tr>
<td></td>
<td>Shipping 3742.1g (8.25 lbs.)</td>
</tr>
</tbody>
</table>